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ABSTRACT: The commercial importance of polyamides (PAs) motivates the development of chemical analysis tools for use in charac-

terizing their structure and properties. Near-infrared (IR) spectroscopy offers advantages in this regard because of its simplicity of

sample preparation and compatibility with sample thicknesses on the order of millimeters. For applications in which the measure-

ment of sample temperature is difficult with a conventional probe, the work presented here demonstrates the ability to determine the

temperature of PA 66 directly from its near-IR spectrum. Temperature-induced changes in spectral shape in the 4000–5000 cm21

region are extracted through application of the discrete wavelet transform, and the resulting preprocessed spectra are submitted to

partial least-squares regression to construct predictive models for temperature. These models are tested across different samples of PA

66 and over a time span of 7 weeks. Errors in predicted temperatures averaged 1.50�C over the range of 21–105�C. VC 2014 Wiley

Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40476.
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INTRODUCTION

Nylon is the generic name given to a group of aliphatic polyam-

ide (PA) polymers that are formed through condensation poly-

merization of a diamine with a dicarboxylic acid.1 The United

States, Canada and Mexico collectively produced 1,193 million

pounds of these polymers in 2012.2 Global production during

this same period was estimated at more than 5,000 million

pounds.3

Polyamide 66 (PA 66) is a subgroup of polymers synthesized by

hexamethylenediamine and adipic acid monomers.1 An impor-

tant structural characteristic of PA 66 is the formation of hydro-

gen bonds between amide linkages. These hydrogen bonds hold

together the polymer chains. PA 66 provides great rigidity, high

mechanical strength, and durability, thereby making it one of

the most widely used polymers in the world. Applications of PA

66 can be found in self-lubricating bearing parts, apparel, tires,

zip ties, ropes, conveyer belts, carpets, electroinsulating ele-

ments, airbags, pipes, hoses, and in various machine parts.4–7

The commercial importance of PAs motivates the development

of chemical analysis tools for use in characterizing their struc-

ture and properties. Among analysis methods, infrared (IR)

spectroscopy is attractive because of the presence of numerous

IR-active functional groups in the PA structure. As an example,

mid-IR spectroscopy has been applied as a nondestructive tool

to characterize PAs in several studies,8–12 although strong

absorption of light in this spectral region limits the technique

to the analysis of thin polymer films.13

Previous studies have also applied near-IR spectroscopy to poly-

mer characterization.9,12–17 Spectral features in the near-IR

region include combinations and overtones of the fundamental

vibrational bands associated with CAH, OAH, and NAH

bonds. The technique is nondestructive, requires little to no

sample preparation, and is compatible with polymer samples of

considerable thickness (e.g., in the millimeter range). However,

the relatively weak and highly overlapped spectral features in

the near-IR region complicate quantitative determinations, as a

single wavelength or single spectral band can rarely be used

alone for the implementation of a successful quantitative cali-

bration. This factor demands the use of multivariate data analy-

sis techniques when quantitative methods are developed from

near-IR spectra.18

Among previous studies, Foster et al.9 documented the use of

near-IR spectral bands to study polymers such as PAs, polyethy-

lenes, and polyisobutylenes. In this work, band assignments in

the near-IR combination and overtone regions were included.

Orendroff et al.12 used near-IR spectroscopy to evaluate the

effects of water and temperature on conformational order in PA

thin films. Ghebremeskel et al.16 used near-IR spectroscopy to

study specific interactions in polymer blends, and Rodgers and
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Lee used near-IR measurements to investigate the structural

properties of PA 66 carpet yarns.17 Wu et al.14 studied the struc-

tural properties of amorphous PAs using two-dimensional near-

IR spectroscopy, and Witschnigg et al.19 applied near-IR meas-

urements to polypropylene nanocomposites for the prediction

of properties such as Young’s modulus.

The research presented here extends the capabilities of near-IR

spectroscopy to the quantitative prediction of physical proper-

ties of PA 66. In this work, the ability to determine the temper-

ature of a PA 66 sample is demonstrated through a direct

near-IR transmission measurement. The motivation for this

work is to develop methods to predict the temperature of a

polymer material directly from its near-IR spectrum, thereby

providing a temperature measurement in applications in which

it is inaccurate or inconvenient to determine the temperature

with a conventional probe such as a thermocouple thermome-

ter. Partial least-squares (PLS) regression20 is used to develop

calibration models to determine the temperature of a given

piece of PA 66 directly from its near-IR spectrum. The predic-

tion performance of these temperature models is assessed for

robustness with time and the ability to predict temperatures

across different sheets of PA 66.

EXPERIMENTAL

Apparatus and Reagents

The spectral data collection described here was performed with a

Bruker Vertex 70 Fourier transform (FT) spectrometer config-

ured with a tungsten–halogen lamp source, calcium fluoride

beam splitter, and liquid nitrogen-cooled indium antimonide

detector (Bruker Optics, Billerica, MA). A low-pass filter (OCLI,

Santa Rosa, CA) was used to restrict the light beyond 5000 cm21,

and a 6.3% neutral density filter (Rolyn Optics, Covina, CA) was

used to attenuate the source intensity to prevent detector satura-

tion. The same optical configuration was used during the collec-

tion of open-beam background spectra and during the

measurement of the PA 66 samples. The beam diameter at the

focal point of the sample compartment was 10 mm.

A custom-made brass heater was used to control the tempera-

ture of the PA samples during the spectroscopic measurements.

A schematic of this device is presented in Figure 1. A cartridge

heater (McMaster-Carr, PN3618K211) enclosed in a block of

brass (89 mm 3 51 mm 3 38 mm) was used as the heating

element for the sample, and two brass plates were mounted on

two metal sample holder plates to increase the thermal conduc-

tivity of the assembly. The PA sample was sandwiched between

the two sample holder plates. Three points of contact were

made on one brass plate to input the three T-type thermocou-

ples (5TC-GG-T-20–72; Omega Engineering, Stamford, CT)

used to obtain the temperature of the sample at a given time.

An Omega (CN7500 series; Omega Engineering) temperature

controller was used to set the temperature of the cartridge

heater to a desired value.

An Omega Model 670 digital thermocouple thermometer

(Omega Engineering) equipped with T-type thermocouples was

used to obtain temperature measurements. A Mettler AE200

analytical balance (Mettler-Toledo, Columbus, OH) was used to

obtain the weight measurements of the pieces of PA 66. A

Fisher Scientific Isotemp Model 655G oven (Fisher Scientific,

Pittsburgh, PA) and a glass desiccator equipped with drierite

(W.A. Hammond Drierite, Xenia, OH) were used for drying

purposes.

Procedures

Commercially obtained PA 66 samples (McMaster-Carr, Elm-

hurst, IL) were used in this analysis. Four pieces of PA 66 (A, B,

C, and D) were used in the spectral data collection. Each of

these samples was obtained from a different sheet of the mate-

rial. The average dimensions of the PA pieces were 35.00 3

35.00 3 0.40 6 0.01 mm, and the average weight was

0.7215 6 0.0001 g.

To build calibration models to relate spectral intensities to refer-

ence temperatures, a set of 72 spectra were collected using PA

Piece A over a temperature range from room temperature

(�21.0�C) to 105.0�C. This corresponded to three consecutive

replicate spectra collected at 24 different temperature levels

between 21.0 and 105.0�C. To assess the long-term predictive

ability of the temperature models, 10 sets of spectra were col-

lected using PA Pieces B, C, and D over the same temperature

Figure 1. Schematic diagram of the custom-made brass heater used to obtain desired temperatures of the PA samples.
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range over a period of 7 weeks. The datasets collected are sum-

marized in Table I.

All calibration and prediction spectra were obtained with dry

PA 66. Each PA piece used in the data collection was dried in

the oven to remove any moisture before the experiment. Weight

measurements were obtained both before and after the spectral

collection to verify that dry conditions were maintained. The

brass heater described previously was used to heat the sample

to a given temperature. The temperatures used during the spec-

tral collection were randomized to minimize the correlation of

temperature with time. Similar randomization procedures were

used during the collection of the calibration and prediction

data.

Open-beam air spectra were used as backgrounds in the calcula-

tion of absorbance spectra of the samples. For a given spectral

collection session, eight warm-up air spectra were collected at

the beginning of the day, and six air spectra were collected at

the end of the day. The average of the 14 air spectra was used

as the background in computing absorbance spectra of the PA

samples measured during the corresponding data collection

session.

The raw data consisted of 256 coadded double-sided interfero-

grams containing 14,220 points collected at every zero crossing

of the helium–neon reference laser (15800.45 cm21) with a

nominal spectral resolution of 4 cm21 and an aperture setting

of 6 mm. All interferograms were converted to single-beam

spectra with a point spacing of 1.9288 cm21 by applying two

levels of zero filling, Blackmann-Harris 3-term apodization and

Mertz phase correction. The Fourier processing was performed

with the Opus software (Version 6.5; Bruker Optics) controlling

the spectrometer. After Fourier processing, single-beam spectra

were reduced to the range of 5000–4000 cm21. Further

calculations were performed with Matlab (Version 7.4; The

Mathworks, Natick, MA) on a Dell Precision 670 computer

(Dell Computer Corp., Round Rock, TX) operating under Red

Hat Linux WS (Version 5.2; Red Hat, Raleigh, NC).

RESULTS AND DISCUSSION

Evaluation of Spectral Noise Levels

The quality of the spectra in the calibration and prediction sets

was determined by the average root-mean-square (RMS) noise

of the spectra in each dataset. To compute the noise in the spec-

tra of the PA samples, ratios were taken of each pairwise combi-

nation of the three replicate spectra corresponding to a given

temperature. The performance of the instrument was assessed

by taking the ratio of each pairwise combination of the replicate

air spectra for a given day. Noise spectra were converted to

absorbance units (AUs) and fit to a third-order polynomial to

remove systematic variation. In this study, the spectral region

from 4800 to 4200 cm21 was used to compute RMS noise

values.

The average RMS noise values computed for PA (A) and air

spectra (B) for each spectral dataset are displayed in Figure 2.

The noise levels are consistent across the datasets. The higher

noise values for the PA samples reflect the reduction in light

intensity caused by absorption. Lower light levels under condi-

tions of constant detector noise will result in higher spectral

noise levels.

Near-Infrared Spectral Features and Thermal Behavior

of PA 66

Figure 3 plots a spectrum in AUs over the range of 5000–4000

cm21 for a 0.40-mm-thick piece of dry PA 66 at room tempera-

ture (21.0�C). This spectral region contains combination bands

involving CAH, NAH, and OAH bonds. Previous studies

regarding polymer characterization have identified characteristic

Table I. Summary of Spectral Collection Protocol

Dataset

PA 66
piece
used

Number of
samples/
spectra
collecteda

Time since
calibration
(weeks)

Calibration A 24/72 0

Prediction set 01 (PS01) D 15/45 0.5

Prediction set 02 (PS02) D 14/42 1.5

Prediction set 03 (PS03) B 14/42 2.0

Prediction set 04 (PS04) C 14/42 3.0

Prediction set 05 (PS05) C 14/42 3.0

Prediction set 06 (PS06) B 13/39 3.5

Prediction set 07 (PS07) D 14/42 3.5

Prediction set 08 (PS08) B 14/42 5.0

Prediction set 09 (PS09) C 14/42 6.0

Prediction set 10 (PS10) D 13/39 7.0

a A sample corresponds to one specific setting of the temperature
controller.

Figure 2. Average RMS noise values in units of microabsorbance (mAU)

for (A) spectra of PA 66 and (B) air spectra for a given spectral collection.

The asterisks represent one standard deviation from the average.
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peaks for PA in the near-IR region.13–15 Combination bands of

symmetric and asymmetric stretches of CAH bonds are located

in the region of 4100–4400 cm21. The combination band of a

fundamental NAH bending vibration and the Amide III funda-

mental vibration can be found at 4611 cm21. The third over-

tone of the Amide II fundamental vibration occurs at 4659

cm21, whereas the combination band of a fundamental NAH

bend and the Amide II fundamental vibration can be found at

4877 cm21. Peaks related to amide linkages are expected to be

broader than the other spectral features because the amide link-

ages are involved in hydrogen bonding between the individual

PA chains.13–15

Polyamide 66 is not a good heat conductor. Linear expansion of

PA 66 due to heating is negligible. Changes in temperature pri-

marily affect the intermolecular hydrogen-bonding network that

exists between the polymer chains. However, it is also observed

that temperature changes can influence the structure of the

hydrocarbon chains.14,21 On heating of PA 66, combination

peaks that arise due to hydrogen-bonded amide linkages as well

as combination peaks that arise due to symmetric and asym-

metric stretches of CAH bonds are expected to deviate.

Spectral Preprocessing Methods

In this study, the standard normal variate (SNV) transform22

combined with the discrete wavelet transform (DWT)23 were

used to preprocess the PA absorbance spectra before submitting

them to the PLS regression model. The preprocessing calcula-

tions were applied across the entire 5000–4000 cm21 range.

The SNV method brings the spectra to a consistent scale by

making the average and standard deviation of the spectral

intensities equal to 0.0 and 1.0, respectively. The DWT imple-

ments a spectral decomposition that allows baseline variation

and noise features to be suppressed.

Briefly, in the DWT, a selected wavelet function specified by a

family type and order is scaled (stretched/compressed) and

shifted over a discrete set of levels. Projection of the input signal

(e.g., a near-IR spectrum) onto the wavelet functions yields a

set of wavelet coefficients that describe a decomposition of the

data. This decomposition is applied sequentially for a selected

number of steps (levels). At each level of the decomposition,

the DWT produces two sets of wavelet coefficients termed

approximations and details. The approximations and details

encode low- and high-frequency components of the data,

respectively. After the first decomposition, the approximation

obtained is further decomposed to produce a second set of

approximations and details. This process can continue for as

many levels of decomposition as desired.

Just as the input signal can be decomposed into the sets of

approximations and details, the obtained wavelet coefficients

can be used to reconstruct the signal. This is analogous to per-

forming forward and inverse FTs. By a selective choice of which

wavelet coefficients are used in reconstructing the signal, an

operation analogous to digital filtering can be performed. This

provides a flexible way to remove undesirable components from

the data (e.g., baseline variation or noise).

The determination of how to use the DWT to remove undesired

components from input data is typically performed through an

optimization procedure. This optimization is performed once as

an integral part of the calibration of the temperature model.

Once chosen, the wavelet parameters remain static, and the sub-

sequent application of the DWT to future data is straightfor-

ward and computationally fast.

In this work, optimization of the wavelet function (order), level

of decomposition, and levels of details and approximations used

in reconstructing the spectra was performed with a grid search.

Spectra preprocessed with the SNV transform were used as

inputs to the grid search. Details regarding the levels of each

parameter studied will be given below in the discussion of the

specific procedures used in generating the temperature models.

Near-Infrared Spectra of PA 66 at Different Temperatures

Figure 4 illustrates the spectra collected at different temperatures

and preprocessed with the SNV and DWT methods. The Daube-

chies 6 (db6) wavelet function (i.e., the function of order 6 from

the Daubechies family of wavelets) was used, implemented as

five levels of decomposition and the use of the details in Levels

2, 3, and 4 only in reconstructing the spectra. Spectral features

centered at 4350 and 4600 cm21 show changes in intensity and

peak position as the temperature changes. Combination peaks

that arise due to symmetric and asymmetric stretches of CAH

bonds are centered at 4350 cm21, whereas combination peaks

that arise due to hydrogen-bonded amide linkages are centered

at 4600 cm21. Thus, the observed spectral changes confirm the

influence of temperature change both in the hydrogen-bonding

network and the hydrocarbon chains in PA 66.

Assignment of Reference Temperatures

For the purpose of modeling, the reference temperature

assigned to each PA piece was taken as the average of the read-

ings of the three thermocouples depicted in Figure 1. An initial

concern in adopting this procedure was the closer proximity of

the heating element to thermocouple T1 than to the other two

thermocouples, T2 and T3. To investigate this issue, an alternate

strategy of assigning the reference temperature to each spectrum

was explored in which thermocouples T1, T2, and T3 were

weighted as 0.5, 0.25, and 0.25, respectively, in computing the

Figure 3. Absorbance spectrum of dry PA 66 (0.4 mm thickness) at room

temperature relative to an open-beam air background.
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average. This method increased the influence of the T1 reading

on the computed average.

Linear regression was performed to compare sets of reference

temperatures obtained with the two calculations. The slopes and

intercepts differed by �2%. When the 95% confidence intervals

for the slope and intercept were considered, however, neither the

slopes nor the intercepts were statistically different. On the basis

of this evaluation, the two methods were judged to be equivalent.

The method based on an unweighted average of the three ther-

mocouples was adopted for its simplicity and used to establish

the reference temperatures recorded for each collected spectrum.

Quantitative Modeling Procedures for Temperature Changes

in PA 66

To model the temperature changes in PA 66 samples, PLS cali-

bration models were generated from the computed absorbance

spectra. As noted previously, these absorbance spectra were gen-

erated using single-beam PA spectra with respect to the average

air spectrum obtained over the day of data collection. Absorb-

ance spectra were preprocessed with the SNV and DWT meth-

ods before submitting them to the calibration model, and the

calibration data matrix was mean-centered before the PLS cal-

culation. A grid search protocol was used to optimize the wave-

let parameters, as well as the spectral range submitted to the

PLS calculation and the number of PLS latent variables (factors)

used in the temperature model.

During this study, the grid search protocol used in the wavelet

optimization included scanning the wavelet order from 2 to 8

for the db family (step size of 1). For each wavelet order investi-

gated, the degree of decomposition was scanned from Level 3 to

Level 8 (step size of 1). For each wavelet order and decomposi-

tion level studied, the best hierarchical combination of details

to use in reconstructing the spectrum was evaluated. As an

example, when the decomposition level was 5, the combinations

of details evaluated were [2], [2, 3], [2, 3, 4], and [2, 3, 4, 5].

The Level 1 details and the last level approximation were never

included in the grid search as these coefficients were never

found to be useful.

For each combination of wavelet parameters studied, a further

grid search was used to optimize the wavenumber range and

the number of factors used in building the PLS model for tem-

perature. The second grid search included scanning the wave-

number range from 4050 to 4950 cm21 in steps of 25 cm21

using window sizes from 300 to 800 cm21 in steps of 25 cm21.

For each wavenumber range investigated, models based on 1–10

PLS factors were computed.

A cross-validation (CV) procedure was used to validate the per-

formance of each set of parameters related to the DWT, spectral

range, and number of PLS factors. This procedure involved

leaving out 10% of the calibration spectra with their replicate

measurements and generating a temperature calibration model

from the remaining spectra. The computed calibration model

was then used to predict the temperatures corresponding to the

withheld spectra, and the process was repeated until all spectra

had been withheld once. A standard error of prediction (SEP)

was pooled from the residuals of the predicted temperatures.

This value is termed the cross-validated standard error of pre-

diction (CV-SEP).

The minimum CV-SEP value was used as the criterion for

selecting the optimal parameters for the calibration model.

Once the optimal wavelet parameters and spectral range were

established, a final selection of the number of latent variables

was performed by assessing whether models with fewer latent

Figure 4. Preprocessed absorbance spectra of PA 66 collected at 21

(dashed), 40 (dotted), 60 (dash-dot), 80 (black solid), and 100�C (gray)

over the wavenumber ranges (A) 4450–4300 cm21 and (B) 4650–4450

cm21. Preprocessing was based on application of the SNV transform, fol-

lowed by the DWT. The Daubechies 6 wavelet was used at five levels of

decomposition, followed by the use of the details from Levels, 2, 3, and 4

only in reconstructing the spectra.

Table II. Summary of the Best PLS Calibration Models for Temperature Changes in PA 66

Wavenumber range (cm21) Number of factors Preprocessing method SEC (�C) CV-SEP (�C)

4650–4300 3 SNV and DWT (db6, 5 [2, 3, 4])a 0.61 0.75

4800–4500 5 None 0.50 0.68

a Notation is wavelet family and order of wavelet function, number of levels of decomposition, and the levels of details used in the reconstruction of
the spectrum.
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variables than that producing the minimum CV-SEP were statis-

tically equivalent (i.e., not statistically different). An F-test at

the 95% level was used to make this determination.

Calibration Models for Temperature Changes in PA 66

Calibration models were generated for temperature variations in

PA 66 using PLS regression. Models were developed separately

for preprocessed (i.e., application of the SNV and DWT proce-

dures) and raw PA absorbance spectra. For models built with

raw absorbance spectra, the same grid search described above

was used for the optimization of the wavenumber range

Figure 5. Partial least-squares scores along the first two latent variables

for the preprocessed spectra of PA 66 used in the calibration model. Data

labels are the corresponding sample temperatures. Scores are plotted for

the three replicate spectra collected at each temperature setting. The two

PLS factors account for greater than 99% of the data variance. As shown

by the superimposed ellipses, temperature information appears to be

encoded in three prominent bands of increasing temperature from the

lower left to the upper right of the figure. These three bands seem to be

clustered according to the time of data collection, as indicated by the

elapsed time ranges (in hours relative to the start of data collection)

placed next to each ellipse.

Table III. Prediction Performance of PLS Calibration Models for

Temperature Changes in PA 66

Dataset

PA 66
piece
used

SEP for
preprocessed
spectra (�C)

SEP for
raw
spectra (�C)

Calibrationa A 0.75 0.68

Prediction set 01 (PS01) D 1.15 2.95

Prediction set 02 (PS02) D 1.61 1.25

Prediction set 03 (PS03) B 0.84 2.37

Prediction set 04 (PS04) C 2.65 6.40

Prediction set 05 (PS05) C 1.87 16.9

Prediction set 06 (PS06) B 1.03 15.8

Prediction set 07 (PS07) D 1.49 11.9

Prediction set 08 (PS08) B 0.70 9.55

Prediction set 09 (PS09) C 2.16 16.8

Prediction set 10 (PS10) D 1.50 18.2

a Results given for the calibration data are values of CV-SEP.

Figure 6. Prediction performance of PLS calibration models for tempera-

ture changes in PA 66. Values of SEP are plotted for the prediction sets,

whereas CV-SEP is displayed for the calibration data. The left (black) and

right (gray) bars within each group correspond to the models based on

raw and preprocessed absorbance spectra. The labels above each group of

bars correspond to the piece of PA 66 used in the data collection. The

models based on preprocessed spectra clearly outperform those based on

raw absorbance spectra. When the results based on preprocessed spectra

are considered, PA 66 Piece C consistently produces the highest prediction

errors.

Figure 7. Correlation (A) and residual (B) plots for the calibration data

used to build the model for temperature changes in PA 66. Piece A was

used. The solid lines in Panels A and B denote perfect correlation between

estimated and reference temperatures and residuals of 0.0�C, respectively.

Both plots show a good correlation and randomly scattered unbiased

residuals.
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submitted to the PLS calculation and the number of PLS factors

used in the final model.

These models are summarized in Table II. The wavenumber

ranges, number of PLS latent variables, and values of the stand-

ard error of calibration (SEC) and CV-SEP are listed in the

table. The SEC is the standard error in predicted temperatures

achieved with the calibration data when all spectra were

included in the calculation of the model.

The optimal wavenumber range for preprocessed spectra was

4650–4300 cm21 with three PLS factors used to construct the

model. The DWT preprocessing used the db6 wavelet function

at five levels of decomposition, with Levels 2, 3, and 4 only

used for reconstructing the spectra. These are the parameters

used to preprocess the spectra displayed in Figure 4. The best

calibration model gave a CV-SEP value of 0.75�C. By compari-

son, the optimal wavenumber range for raw spectra was 4800–

4500 cm21 with five PLS factors. The best calibration model

gave a CV-SEP value of 0.68�C.

Figure 5 is a PLS score plot that illustrates the data variance encom-

passing the preprocessed PA spectra used to compute the calibra-

tion model. Scores along the first two PLS factors are plotted. The

first PLS factor explains about 97% of the spectral variance. Spectra

collected at a given temperature tend to cluster together. However,

as shown by the superimposed ellipses, temperature information is

encoded in three prominent bands of increasing temperature from

the lower left to the upper right of the figure. As shown by the time

ranges indicated for each ellipse (elapsed time relative to the start of

data collection), these three bands are clustered according to the

time of data acquisition. Some time-dependent spectral drift effects

are thus embedded in the data.

Prediction Performance of Temperature Models for PA 66

The long-term prediction performance of the calibration models

was assessed using 10 prediction sets of PA 66 spectra collected

over a period of 2 months. These results are summarized in

Table III. The prediction performance of the calibration model

based on the raw absorbance spectra was poor, with SEP values

exceeding 6�C after 3 weeks. The calibration model based on

preprocessed spectra gave good prediction results with SEP val-

ues ranging from 0.70 to 2.65�C and averaging 1.50�C. More-

over, the model based on preprocessed spectra was able to

predict temperatures across different sheets of PA 66. Piece C

gave the highest SEP values (average SEP of 2.23�C) when com-

pared with the other pieces of PA 66 (average SEP of 0.857 and

1.44�C for Pieces B and D, respectively).

Figure 6 is a bar chart that presents the CV-SEP value for the

calibration data and the SEP values for the prediction sets.

Figure 8. Correlation (A) and residual (B) plots for prediction set 6

(PS06) for temperature changes in PA 66. The solid lines in Panels A and

B denote perfect correlation between estimated and reference temperatures

and residuals of 0.0�C, respectively. Piece B was used in this prediction,

and the duration was 3.5 weeks after calibration. A slight bias is observed

in both the correlation and residual plots.

Figure 9. Correlation (A) and residual (B) plots for prediction set 4

(PS04) for temperature changes in PA 66. The red lines in Panels A and B

denote perfect correlation between estimated and reference temperatures

and residuals of 0.0�C, respectively. Piece C was used in this prediction,

and the duration was 3.0 weeks after calibration. Increased bias is noted

in both the correlation and residual plots relative to the results for Piece

B in Figure 8.
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Paired bars are included for the models computed with and

without spectral preprocessing, and the groups of bars are

labeled according to the piece of PA 66 used. No significant

degradation of performance in the calibration model based on

preprocessed spectra is noted over time. The model based on

raw absorbance data degrades noticeably as the time since cali-

bration increases. However, the specific piece of PA 66 has a

clear influence on the temperature prediction. Within the results

for a given PA piece, however, there is no obvious degradation

in model performance with time.

Figure 7 presents correlation and residual plots for the calibra-

tion data used to build the model for temperature changes in

PA 66. The figure is derived from the preprocessed spectra.

Excellent correlation between predicted and observed tempera-

tures is observed throughout the temperature range. The resid-

ual plot appears randomly scattered with no obvious indicators

of deficiency in the model.

Figures 8–10 present similar correlation and residual plots for

prediction sets PS06, PS04, and PS10, respectively. These figures

are also based on the preprocessed absorbance spectra. The

results in Figures 8–10 correspond to PA Pieces B, C, and D,

respectively. The prediction sets displayed in Figures 8–10 also

span the times of 3.5 (PS06), 3.0 (PS04), and 7.0 (PS10) weeks

removed from the calibration data. The results presented for

Piece C in Figure 9 represent the worst prediction data obtained

in the study (SEP 5 2.65�C).

Although the predictions are very successful when placed into

the context of the �80�C temperature range of the data, some

bias is observed with each set of predicted values. This appears

to be primarily related to the sheet of PA 66, suggesting that a

more robust model may require the representation of different

sheets of polymer in the calibration data.

CONCLUSIONS

In this research, the methodology was successfully developed for

the prediction of the temperatures of samples of PA 66 directly

from their near-IR spectra. This approach was based on the

occurrence of temperature-induced changes in the intensity and

position of spectral bands associated with hydrogen-bonded

amide groups and hydrocarbon chains. This methodology pro-

vides a way to measure sample temperatures when the use of

conventional temperature probes is undesirable.

A signal processing method based on the combination of the

SNV and DWT procedures was found to be successful in stand-

ardizing the spectra before they were submitted to quantitative

models based on PLS regression. These preprocessing steps

allowed the small deviations observed in near-IR spectra of PA

66 as a function of temperature to be extracted reliably.

The long-term prediction performance of the temperature mod-

els was assessed using 10 prediction sets of PA 66 spectra at

different temperatures spanning a period of 7 weeks. The

temperature model based on raw absorbance spectra gave very

high SEP values (>6�C) after prediction set PS04 (3 weeks since

calibration), whereas the model based on preprocessed spectra

provided improved SEP values (0.697–2.65�C) with time.

The use of wavelet functions to standardize the spectra signifi-

cantly improved the performance of the temperature model

with time and also improved the prediction performance across

different sheets of PA 66. Temperature models based on prepro-

cessed spectra gave similar SEP values across the different poly-

mer sheets. However, PA Piece C gave high SEP values (average

SEP 5 2.23�C) when compared with the other three PA pieces

(average SEP 5 1.19�C). This might be due to the inhomogene-

ous nature of different sheets of polymer at a microscopic level.

In principle, these temperature models are not limited to PA 66,

but could be applied to other PAs as well because all the PA

polymers contain the same basic chemical structure. This repre-

sents a potential area for further investigation.
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